The 11th European Conference on Parallel Processing

Grid-BGC: A Grid Enabled Carbon Cycle Modeling Environment

Presenter: Jason Cope
PhD Student
University of Colorado, Boulder
Jason.Cope@colorado.edu

NCAR
Motivation: NCAR as an Integrator

- It is our position that NCAR must provide integrated solutions to the community.

- Scientific workflows are becoming too complicated for manual (or semi-manual) implementation.

- Not reasonable to expect a scientist to:
 - Design simulation solutions by chaining together application software packages
 - Manage the data lifecycle (check out, analysis, publishing, and check in)
 - Do this in an evolving computational and information environment

- NCAR must provide the software infrastructure to allow scientists to seamlessly (and painlessly) implement their workflows, thereby allowing them to concentrate on what they’re good at: SCIENCE!

- Goal is increased scientific productivity and requires an unprecedented level of integration of both systems and software.

- Long term investment: return to the organization won’t show up in the bottom line immediately.
Motivation: Robust Modeling Environments

- Our goal is to develop a simple, production quality modeling environment for NCAR and the geoscience community that insulates scientists from the technical details of the execution environment
 - Cyberinfrastructure
 - System and software integration
 - Data archiving

- Grid-BGC is an example of such an environment and is the first of these environments developed for NCAR
 - Learning as we develop and deploy
 - Tasked by the geoscience community, but developed services are applicable to other collaborative research projects
Outline

- Introduction
- Carbon Cycle Modeling
- Service Oriented Architecture for the Earth Sciences
- Grid-BGC System Architecture
- Re-tasking the services for other Earth Science applications
- Future Work
Introduction: Participants

- This is a collaborative project between the National Center for Atmospheric Research (NCAR) and the University of Colorado at Boulder (CU)

- NASA has provided funding for three years via the Advanced Information Systems Technology (AIST) program

- Researchers:
 - Peter Thornton (PI), NCAR
 - Henry Tufo (co-PI), CU
 - Luca Cinquini, NCAR
 - Jason Cope, CU
 - Craig Hartsough, NCAR
 - Rich Loft, NCAR
 - Sean McCreary, CU
 - Don Middleton, NCAR
 - Nate Wilhelmi, NCAR
 - Matthew Woitaszek, CU
Carbon Cycle Modeling: Workflow

Daymet inputs…

…Grid-BGC outputs
Carbon Cycle Modeling: Workflow

- Scientific models
 - Daymet
 - Biome-BGC
- Daymet interpolates a high resolution grid of weather observations for a region
- Biome BGC calculates carbon cycle parameters at the individual grid points for each region
- Models originally intended for analysis of small geographic regions.
- Analysis of larger regions is accomplished by simulating its composite regions
Goal: Create an easy to use computational environment for scientists running large scale carbon cycle simulations.

- Requires the management of multiple simultaneously executing workflows
 - Execution management
 - Data management
 - Task automation

- Distributed resources across multiple organizations
 - Data archive and front-end portal are located at NCAR
 - Execution resources are located at CU
Choosing the Appropriate Architecture for Grid-BGC

<table>
<thead>
<tr>
<th>Description</th>
<th>Resource Oriented</th>
<th>Agent Oriented</th>
<th>Service Oriented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Homogenous hardware and software configuration</td>
<td>Intelligent software agents process tasks and goals</td>
<td>Heterogeneous hardware and software configuration possible</td>
</tr>
<tr>
<td></td>
<td>Infrastructure is exposed</td>
<td>Utilizes a resource or service oriented architecture</td>
<td>Functionality available to users and other systems as services with known interfaces</td>
</tr>
<tr>
<td>Pros</td>
<td>Large resource allocations across multiple virtual organizations possible</td>
<td>Automation</td>
<td>Provide abstract interfaces to functional components. Users and developers are not exposed to the underlying service implementation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Search large environments more effectively than a system user</td>
<td>Services become building blocks for more complicated services (code reuse)</td>
</tr>
<tr>
<td>Cons</td>
<td>Complex</td>
<td>A resource or service oriented architecture must be in place</td>
<td>Power is hidden</td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Department of Computer Science
University of Colorado at Boulder
9
Service Oriented Architecture for the Earth Sciences: Requirements

- Provide a simple and portable user interface to the services
- Support a variety of programming models (pthreads, MPI, …)
- Support wide range of computer architectures (IBM Power, AMD Opteron, Intel Xeon, …)
- Support management of simple scientific workflows
- Support large data sets (100 MB – 1 TB)
- Integrate wide range of distributed resources
 - NCAR Mass Storage System
 - Heterogeneous and distributed computational resources
Service Oriented Architecture for the Earth Sciences: Desired Services

- **User interface services**
 - Portal
 - GUI
 - Command line client

- **Data services**
 - Mass storage service
 - File transfer service
 - Data publishing service

- **Execution services**
 - Model execution service
 - Workflow control service
 - Resource allocation service

- **Metadata services**
 - Registry / index service
 - Resource brokerage service
Grid-BGC: System Overview

- **System goals**
 - Easy to use
 - Efficient and productive science

- **Development summary**
 - Prototype developed with GT 3.2
 - Current system redeveloped with GT4
 - Integrates resources from NCAR and CU

- **Architecture Implementation**
 - Not a pure service oriented architecture, but moving towards one
 - Currently more like a service oriented application
Service Oriented Architecture for the Earth Sciences: Implemented Services

- **User interface services**
 - Portal
 - GUI
 - Command line client

- **Data services**
 - Mass storage service
 - File transfer service
 - Data publishing service

- **Execution services**
 - Model execution service
 - Workflow control service
 - Resource allocation service

- **Metadata services**
 - Registry / Index Service
 - Resource brokerage service
Service Oriented Architecture for the Earth Sciences: Implemented Services

- User interface services
 - Portal
 - GUI
 - Command line client

- Data services
 - Mass storage service
 - File transfer service
 - Data publishing service

- Execution services
 - Model execution service
 - Workflow control service
 - Resource allocation service

- Metadata services
 - Registry / Index Service
 - Resource brokerage service
Grid-BGC: System Architecture

Web Portal User Interface

- Grid-BGC Model Web Service
- Daymet Model Web Service

Workflow Service

Workflow Manager

- Surfer Resource Broker
- WS-GRAM
- Globus RFT

MyProxy

GridFTP
Grid-BGC Portal

- Web interface to Grid-BGC
- JSP / Tomcat implementation using CoG Kit
- Composed of logical services
Grid-BGC Execution Services

- Execution service contains all functionality needed to run a model and is aware only of those models
- Provides interface to request and initialize a model run
 - Creates directory structure
 - Creates model initialization files
 - Registers file transfers and executables with the workflow manager
- Provides interfaces to query, terminate, and cleanup requested model runs
Workflow Control Service and Workflow Manager

- **Workflow Control Service**
 - Provides functions to register workflow tasks, model executions, and file transfers
 - Execution service uses the workflow control service functions to register its tasks
 - Workflow control service stores the workflow metadata in a persistent database

- **Workflow Manager**
 - Periodically queries the workflow metadata database for new tasks to execute
 - Delegates file transfers to the Reliable File Transfer service (RFT) and job executions to the Grid Resource and Allocation Management Service (GRAM)
Example Grid-BGC Workflow

Diagram:

- Grid-BGC Portal Clients
- Grid-BGC Service
- Workflow Control Service
- Job Data
- Workflow Manager
- Globus WS GRAM
- Globus Reliable File Transfer

Application Clients
Application Grid services
Workflow Manager Service
Globus Toolkit components
Current Grid Topology
Grid Enabling POP

- Parallel Ocean Program (POP)
 - Developed by the DOE at the Los Alamos National Laboratory
 - Component of NCAR’s Community Climate System Model (CCSM)

- Grid Enabling POP
 - Re-tasked the grid service and workflow subsystem to run POP
 - Required
 - New execution service
 - New client interface for accessing the service
 - No changes to the workflow subsystem
Future Work: Expansion of the Grid-BGC Environment

- Integrate new computational resources
 - Integrate NASA’s Columbia Supercomputer into the Grid-BGC environment
 - Integrate resources provided by the system’s users (University of Wisconsin, …)

- Continue to break out the desired services from current system components

- Visualization
Future Work: Grid Enabling More Earth Science Applications
Experiences from Simulating the Global Carbon Cycle in a Grid Computing Environment

This research was supported in part by the National Aeronautics and Space Administration (NASA) under AIST Grant AIST-02-0036, the National Science Foundation (NSF) under ARI Grant #CDA-9601817, and NSF sponsorship of the National Center for Atmospheric Research.

Questions?
Ideas? Comments?
Suggestions?
http://www.gridbgc.ucar.edu

Presenter’s email:
Jason.Cope@colorado.edu

NCAR