Experiences from Simulating the Global Carbon Cycle in a Grid Computing Environment

Presenter: Jason Cope
PhD Student
University of Colorado, Boulder
Jason.Cope@colorado.edu
Motivation: NCAR as an Integrator

- It is our position that NCAR must provide integrated solutions to the community.

- Scientific workflows are becoming too complicated for manual (or semi-manual) implementation.

- Not reasonable to expect a scientist to:
 - Design simulation solutions by chaining together application software packages
 - Manage the data lifecycle (check out, analysis, publishing, and check in)
 - Do this in an evolving computational and information environment

- NCAR must provide the software infrastructure to allow scientist to seamlessly (and painlessly) implement their workflows, thereby allowing them to concentrate on what they’re good at: SCIENCE!

- Goal is increased scientific productivity and requires an unprecedented level of integration of both systems and software.

- Long term investment: return to the organization won’t show up in the bottom line immediately.
Motivation: Robust Modeling Environments

- Our goal is to develop a simple, production quality modeling environment for NCAR and the geoscience community that insulates scientists from the technical details of the execution environment
 - Cyberinfrastructure
 - System and software integration
 - Data archiving

- Grid-BGC is an example of such an environment and is the first of these environments developed for NCAR
 - Learning as we develop and deploy
 - Tasked by the geoscience community, but developed services are applicable to other collaborative research projects
Outline

- Introduction
- Carbon Cycle Modeling
- Grid-BGC Prototype Architecture
- Experiences with the Grid
- Grid-BGC Production Architecture
- Future Work
Introduction: Participants

- This is a collaborative project between the National Center for Atmospheric Research (NCAR) and the University of Colorado at Boulder (CU)

- NASA has provided funding for three years via the Advanced Information Systems Technology (AIST) program

- Researchers:
 - Peter Thornton (PI), NCAR
 - Henry Tufo (co-PI), CU
 - Luca Cinquini, NCAR
 - Jason Cope, CU
 - Craig Hartsough, NCAR
 - Rich Loft, NCAR
 - Sean McCreary, CU
 - Don Middleton, NCAR
 - Nate Wilhelmi, NCAR
 - Matthew Woitaszek, CU
Carbon Cycle Modeling: Workflow

- **Scientific models**
 - Daymet
 - Biome-BGC

- **Daymet** interpolates a high resolution grid of weather observations for a region.

- **Biome BGC** calculates carbon cycle parameters at the individual grid points for each region.

- **Models originally intended for analysis of small geographic regions.**

- **Analysis of larger regions is accomplished by simulating its composite regions.**
Carbon Cycle Modeling: Grid-BGC Motivation

Goal: Create an easy to use computational environment for scientists running large scale carbon cycle simulations.

- Requires the management of multiple simultaneously executing workflows
 - Execution management
 - Data management
 - Task automation

- Distributed resources across multiple organizations
 - Data archive and front-end portal are located at NCAR
 - Execution resources are located at CU
Grid-BGC Prototype Architecture (June, 2004): Overview

- **Main components**
 - Web portal GUI
 - JobManager
 - DataMover

- **Prototype goals**
 - Create a computational grid from GT 3.2
 - Create a reliable execution environment
 - Simplify usage and management
Experiences

- **Security**
 - Security breach during Spring 2004 impacted Grid-BGC’s design
 - Continually evolving requirement and component
 - One time password authentication
 - Short lived certificates
 - Unique requirements may make implementation difficult

- **Reliability and Fault Tolerance**
 - Grid-BGC is self healing
 - Detect and correct failures without scientist intervention
 - Hold uncorrectable errors for administrative action
Experiences: Grid Development

- Grid-BGC is the first production quality computational grid developed by NCAR and CU.

- Prototype development began January 2004 and ended September 2004

- More difficult than we anticipated
 - Pleasant persistence in the face of frustration is an essential quality for developers of a grid computing environment
 - We found that the middleware and development tools for GT 3.2 were not “production grade” for our environment, but were rapidly improving
 - Distributed, heterogeneous, and asynchronous system development and debugging are difficult tasks

- Developers’ mileage with grid middleware will vary
 - Globus components may or may not be useful
 - While critical components are available, more specific components will certainly need development
Experiences: Analysis of the Prototype

- What we did well
 - Proof of concept grid environment was a success
 - Portal, grid services, and automation tools create a simplified user environment
 - Fault tolerant

- What we needed to improve
 - Modularize the monolithic architecture
 - Break out functionality
 - Move towards a service oriented architecture
 - Re-evaluate data management policies and tools
 - GridFTP / Replica Location Service (RLS) vs. DataMover
 - Misuse of NCAR MSS as temporary storage platform
 - Use the appropriate Globus compliant tools
 - Many Globus components can be used in place **third-party** or **in-house** tools
 - More recent release of GT have improved the quality and usability of the components and documentation
Grid-BGC Production Architecture (June, 2005): Overview

- Production architecture addresses prototypes goals
 - Ease of use
 - Efficient and productive

- Additionally, production architecture addresses
 - Modular design
 - GT4 Compliance
 - Restructuring execution and data management
Grid-BGC Production Architecture (June, 2005): Overview
Grid-BGC Production Architecture
Grid-BGC Production Architecture: Improvements

- Usage of more Globus Toolkit components and services
 - WS-GRAM
 - GridFTP and Reliable File Transfer (RFT) service

- Restructuring data management
 - Remove of DataMover, replace with RFT
 - Use Replica Location Service (RLS) as needed

- Restructuring execution management
 - Removal of JobManager, replace with WS GRAM and a custom client
 - Develop a simple workflow manager

- Modularize components
 - Break out individual components from the monolithic kernel
 - Create a service oriented architecture
 - Separate functional components
 - Generic and reusable
Grid-BGC Production Architecture: GT4 Experience

- Improvements in Grid middleware immediately useful in our environment
 - MyProxy officially supported
 - WS GRAM meets our expectations
 - RFT and GridFTP

- Porting Grid-BGC prototype was easier than expected
 - Modular design limited the amount of changes needed
 - Improved documentation of GT components
Future Work: Expansion of the Grid-BGC Environment

- Integrate NASA’s Columbia Supercomputer into the Grid-BGC environment
 - Late Summer 2005
 - Deploy the computational framework and components
 - End-to-end testing between distributed Grid-BGC components

- Integrate resources provided by the system’s users
Future Work: CU / NCAR HTWM
Experiences from Simulating the Global Carbon Cycle in a Grid Computing Environment

This research was supported in part by the National Aeronautics and Space Administration (NASA) under AIST Grant AIST-02-0036, the National Science Foundation (NSF) under ARI Grant #CDA-9601817, and NSF sponsorship of the National Center for Atmospheric Research.

Questions?
Ideas? Comments?
Suggestions?
http://www.gridbgc.ucar.edu

Presenter’s email:
Jason.Cope@colorado.edu