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Abstract. In this paper, we examine parallel filesystems for shared deployment 
across multiple Linux clusters running with different hardware architectures 
and operating systems. Specifically, we deploy PVFS2, GPFS, Lustre, and 
TerraFS in our test environment containing Intel Xeon, Intel x86-64, and IBM 
PPC970 systems. We comment on the feature sets of each filesystem, describe 
our implementation and configuration experiences, and present initial 
performance benchmark results. Our analysis shows that all of the parallel 
filesystems outperform a legacy NFS system but with different levels of 
complexity. Each of the filesystems demonstrates the best performance under 
certain conditions. Three of the systems – GPFS, Lustre and TerraFS – depend 
on specific kernel versions that increase administrative complexity and can 
reduce interoperability.  

1 Introduction 

High-performance computing environments require parallel filesystems. Traditional 
single-host file systems (e.g., those exported via Network File System (NFS)) are 
unable to efficiently scale to support hundreds of nodes or utilize multiple servers. 
Parallel filesystems are typically deployed for dedicated high-performance storage 
solutions within clusters, usually as part of a vendor’s integrated cluster solution; 
typically these parallel filesystems are so tightly integrated with a single cluster’s 
hardware and software environment that sharing is impractical. Recently, several 
parallel filesystems have been introduced that are designed to make sharing a 
filesystem between clusters feasible in the presence of hardware and software 
heterogeneity. Our investigation has identified four parallel filesystems that support 
such heterogeneity and which, in our opinion, are currently deployable in a 
production computing environment: GPFS, TerraFS, PVFS2, and Lustre. The 
objective of this paper is to quantify the performance of these filesystems and identify 
their respective strengths and weaknesses. 

We maintain two moderate-sized clusters with processor counts of 54 and 128 at 
the University of Colorado (CU). Both clusters currently share home directories and a 
large scratch space using NFS. We employ subsets of both clusters in this 
investigation. The primary attraction of implementing a shared parallel filesystem in 
our cluster environment is the increase in I/O performance and the addition of high 
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availability features, such as redundant storage servers capable of serving files during 
server outages.  

In addition to maintaining the CU environment, we work with members of the 
Scientific Computing Division (SCD) at the National Center for Atmospheric 
Research (NCAR) where there is current interest to deploy shared parallel filesystems 
in their heterogeneous production computing environment at the Mesa Lab facility. 
Most of the clusters maintained by SCD contain at least 256 processors and are 
configured to appear similar to their current IBM p690 based production 
supercomputing environment. NFS is currently used to provide shared home 
directories across all machines for code repositories, but large data files are stored on 
a centralized tape-based Mass Storage System (MSS). Each cluster has its own private 
scratch space as part of the vendor-provided installation. Users include stage-in and 
stage-out directives in their queue batch scripts to manually migrate large data files 
between mass storage, local cluster scratch space, and other clusters’ local scratch 
space as their jobs execute. Some users are exploring using Grid-based tools such as 
the Storage Resource Broker [12] and DataMover [11] to move data between clusters 
in the same machine room. Other users prefix and suffix their queue scripts with 
commands to stage data through the mass storage system manually. This forces large 
quantities of data to move through a single host, introducing a bottleneck limited by a 
single host’s I/O and network connectivity. In addition, the file staging operation 
occurs only on one node, but during this time the remainder of the nodes allocated for 
the parallel job is idle. Either solution requires that the user, usually an application 
scientist, directly manage data flow between multiple machines. A single shared 
filesystem, with sufficient performance to store model data between simulation and 
visualization execution stages while meeting reliability requirements, would 
substantially reduce the time, network bandwidth, and storage space consumed by 
routine bulk data replication while providing a more user-friendly computing 
environment, thereby allowing scientists to focus on the science. 

Our interest is in parallel filesystems that can serve commodity clusters with a 
minimum of specialized hardware. In this environment, we envision a small storage 
cluster of servers running the filesystem, connected to disks via SCSI, iSCSI, or fibre 
channel. While many compute clusters utilize a specialized interconnect such as 
Myrinet, Infiniband, or Dolphin for MPI traffic, the multi-cluster installations we are 
familiar with use separate MPI interconnects for each cluster. Thus, we require that 
each parallel filesystem be able to serve clients using Ethernet and postpone an 
examination of specialized interconnect compatibility, which requires datacenter 
preplanning, for future work. 

We examine IBM’s General Parallel File System (GPFS) [6], Cluster File 
Systems’ (CFS) Lustre [3], TerraScale Technologies’ TerraFS [13], and Argonne and 
Clemson’s Parallel Virtual File System 2 (PVFS2) [9], and compare these to the 
baseline NFS shared file system we current employ. We selected these systems 
because of their popularity in current high-performance computing environments, 
ability to function without specialized fibre channel hardware, and advertised 
capability to operate in the type of heterogeneous cluster environment we’re targeting. 
In surveying these systems we evaluated the ability of each filesystem to fit into 
typical datacenters similar to those at CU and NCAR, with special attention to the 
staff effort required to deploy, configure, and maintain each solution. We intend to 
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trade application-centric parallel I/O performance for ubiquity, but the centralized 
storage space must be of sufficiently high performance that users may read and write 
data files from it without staging, thus reducing reliance of cluster-specific 
filesystems and single-host NFS volumes. 

Each filesystem is compared in terms of performance, usability, and stability, as 
well as additional features unique to each filesystem. For performance, we examine 
average aggregate transfer rates and metadata operation rates in order to confirm that 
each parallel filesystem outperforms NFS and rank the systems in similar 
configurations. For usability, we examine filesystem features such as security to 
determine if the system is appropriate for a large multi-user home directory data store. 
Finally, we approach stability from the perspective of administration overhead. 
Systems with control commands that routinely fail, or daemons that cease to execute 
without warning, are not welcome additions to a managed production computing 
environment. 

The remainder of this paper is organized as follows: Section 2 introduces relevant 
related work. Section 3 describes our experimental setup and presents a summary of 
each filesystem’s characteristics. We present our installation experiences in Section 4 
and performance benchmarking results in Section 5. The final sections present future 
work and conclusions. 

2 Related Work 

The performance of individual filesystems has been studied as each filesystem 
matures, with some national laboratories actively partnering with corporations to 
produce filesystems to meet their high performance computing requirements. 
Lawrence Livermore National Laboratory (LLNL), for example, has worked with 
Cluster File Systems to develop Lustre [4]. The primary LLNL objectives are focused 
on solving their need for a highly parallel filesystem not restricted to specific 
hardware, such as IBM GPFS or Sistina’s SAN-based GFS, deployed as a scalable 
and secure datacenter-wide filesystem. 

NCSA is exploring the breadth of available parallel filesystems and is in the 
process of evaluating filesystems for integration with their mass storage and TeraGrid 
systems [5]. In the past few years, NCSA has tested GPFS, GFS, Panasas, SamFS, 
SGI CxFS, an ADIC solution, Lustre, and IBRIX. Each of their supercomputer 
systems supports one or more separate filesystems, but the aggregate petabyte of 
spinning disk is split into many different systems. NCSA requires a high level of 
reliability and stability, and is researching ways to move data throughout the 
datacenter in ways that are transparent to the user and provide high bandwidth. 

Work on parallel filesystems for Linux clusters was recently performed by the San 
Diego Supercomputer Center (SDSC), which examined PVFS, Lustre, and GPFS on 
their IA-64 cluster [8]. The authors evaluated these filesystems from both the 
administration and performance perspective, examining the ease of installation and 
maintenance as well as each filesystem’s performance and redundancy characteristics. 
The SDSC study focused on a homogeneous architecture with much larger fibre-
channel equipped storage servers typical of high-performance clusters. The authors 
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discuss the strengths and weaknesses of these filesystems and conclude that 
filesystem selection is strongly influenced by site requirements. For example, PVFS 
provides application support through ROMIO but with less performance than Lustre 
and GPFS.  

3 Experimental Setup 

Our experimental setup consists of a small storage cluster and two target compute 
clusters (see Fig. 1). The storage cluster connects to the computational clusters 
through dual gigabit Ethernet trunk links. The compute clusters are administered 
using a single authentication namespace, while the storage cluster machines are 
restricted to administrator access. 
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Fig. 1. Experimental cluster setup  

Our storage cluster consists of two identical IBM x345 storage nodes. Each x345 
system contains dual Xeon 3.06GHZ processors with 512KB L2 cache and 2.5GB of 
PC2100 RAM. Storage is provided by a direct attached IBM EXP400 RAID5 disk 
chassis containing 14 Ultra320 10k RPM drives controlled by a IBM ServeRAID 6M 
Ultra320 SCSI RAID card plugged into the 64-bit, 133MHz PCI-X slot. The RAID5 
configuration consists of 13 disks with a single hot spare. Each filesystem was given a 
400GB partition on each storage node using LVM except for GPFS. Because GPFS 
does not support LVM-based devices as storage targets, we configured it with block 
access to the entire RAID array instead. Some filesystems, such as Lustre and PVFS2, 
support a separate metadata controller. For these systems, an Intel x86-64 EM64T 
system with dual 3.4 GHz processors and 8GB RAM was utilized. The storage and 
metadata nodes are each connected to the core switch using two 1Gbps Ethernet links 
under the control of Linux channel bonding and switch-side trunking. We tested all 
filesystems under this channel bonded interface, but we also tested some filesystems 
with untrunked single gigabit Ethernet connections to the storage servers as well. 

Our primary computational cluster, the Xeon cluster, consists of 64 nodes 
connected by an 8x8 Dolphin torus. Each node contains dual Xeon 2.4 GHz 
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processors and 2GB RAM. This commodity cluster typically runs the kernel.org 
Linux 2.4.26 kernel, although some filesystems required installing specific kernels. 
Our secondary computational cluster consists of 27 IBM JS20 blades. Each blade 
contains two PowerPC 970 (PPC970) 1.6 GHz processors and 2.5 GB RAM. This 
cluster must run SuSE SLES9 Linux. Because we wanted to maintain production 
computing on our Xeon cluster, we dedicated 14 nodes to filesystem testing.  

4 Experiences 

Our experience with the filesystems covers installation, configuration, and 
management of each product. The first issue we encountered and which warrants 
special mention is the known vendor compatibility with each system in our 
environment (see Table 1). Some filesystems required specific kernels on the servers, 
some required specific kernels on the clients, and some of these requirements 
overlapped in a fashion that prevented us from installing the products! Most notably, 
Lustre and GPFS require specific kernel versions only available from commercial 
Linux vendors such as SuSE and RedHat. Use of these systems requires use of a 
specifically supported kernel variant. PVFS2, which requires only a kernel module, 
does not require a specific kernel release. Finally, TerraFS requires a specific kernel 
patch, but TerraScale currently builds patched kernels based on client specifications.  

Table 1. Architecture and Operating System Kernel Support for Filesystem Clients and Servers 

 GPFS 2.3 Lustre 1.4.0 PVFS2 TerraFS 
Intel x86-64 
Metadata server Not Used Restricted 

SLES .141 No Change Not Used 

Intel Xeon  
Storage server 

Restricted 
SLES .111 

Restricted 
SLES .141 No Change No Change 

PPC970 Client Restricted 
SLES .111 

Restricted 
SLES .141  

All 
(Module Only) N/A 

Intel Xeon 
Client 

Restricted 
SLES .111 

Restricted 
SLES .141 

All 
(Module Only) 

Custom 
2.4.26 Patch 

Restricted indicates that only a small subset of kernels are acceptable. Custom 
indicates that the vendor builds custom kernels for sites at request. All indicates that 
all of the standard available kernels worked. The variant of the operating system we 
used is shown. The SLES kernels are 2.6.5-7.x with the specific build revision noted. 

 
One other item of interest is the performance gain provided to each filesystem by 

Linux kernel-level Ethernet channel bonding. When we first obtained the storage 
servers, each server was connected to the core switch using a single gigabit Ethernet 
connection. We ran a full series of aggregate I/O bandwidth tests using NFS, PVFS2, 
and Lustre using this configuration. We then used Linux channel bonding to combine 
the two Ethernet devices into one interface, which also required configuring the 
Ethernet switch ports to function as a trunk. With the exception of specifically noted 
single-gigabit Ethernet tests, all of the tests were performed using Linux channel 
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bonding. Our results show that Linux channel bonding can provide definite 
performance improvements for some filesystems, but others do not exhibit any 
performance gain. In the latter case, vendors may recommend alternate configurations 
to improve performance using multiple non-bonded Ethernet interfaces. We opted to 
use a consistent experimental networking setup for all filesystems and have not 
explored these configurations. 

4.1 PVFS2 

PVFS2 was easy to install and configure. PVFS2 was almost fully compatible with 
our current computational environment. The software provided useful configuration 
options, but did not provide some desirable performance tuning parameters and 
software fault tolerance configuration solutions. 

The install process for PVFS2 was fairly straightforward. The build and install 
process for the software was similar to most GNU Linux programs compiled from 
source through the standard three step build process: configure, make, and make 
install. The version tested, 1.0.1, was successfully built for all computer architectures 
tested on and for both the 2.4.x and 2.6.x Linux kernels. 

Configuration of PVFS2 was also an easy task. PVFS2 provides a question and 
answer based configuration tool that generates the configuration files for all nodes in 
the system. The generated configuration files are copied to the appropriate nodes once 
the configuration tool completes. A PVFS2 file system can be configured with a 
single storage and metadata server or several instances of the servers. The stripe 
pattern and size cannot be configured for PVFS2. Instead, the PVFS2 documentation 
recommends that the number of storage servers and metadata servers be configured as 
appropriate for the intended applications using PVFS2. The documentation 
recommends that applications that access many files should be configured with 
multiple metadata servers and applications that read or write large files should employ 
several storage servers. PVFS2 fails to provide software enabled server failover or 
redundancy solutions. Instead, the software documentation outlines a configuration 
for the file system to be redundant to some failures through the use of specialized 
SCSI hardware. 

PVFS2 servers and clients successfully ran on all of our systems and architectures. 
Our preferred configuration included a single metadata server on the Xeon x86 64-bit 
node, two storage servers running on IBM x345 nodes, and clients on both Intel Xeon 
32-bit nodes and IBM PPC970 64-bit nodes. Starting and stopping the servers and 
clients required more effort than other file systems. With the scripts and programs 
provided by the source build, starting the file system consisted of individually staring 
the metadata and storage servers as well as the clients. Storage servers are started with 
a single command that may need to be issued more than once if the filesystem has not 
been created beforehand. The clients require that the PVFS2 kernel module be loaded, 
the client application be started, and that the PVFS2 file system be mounted. Startup 
scripts are available to automate these tasks for Red Hat systems but must be 
configured and installed after the installation of PVFS2. Overall, we found that 
PVFS2 provides a stable and reliable parallel filesystem in our environment. 
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4.2 Lustre 

Our experiences with the Lustre occurred in several phases. The install process was 
challenging but worthwhile because of the benefits gained from using this filesystem. 
Initially, we attempted to apply the Lustre kernel patches to the source of the kernels 
running in our environment. This was a difficult task and we were not able to 
successfully patch our stock kernels. Lustre supplies some useful tools to help with 
patch management, but we found that our stock kernels could not accommodate the 
Lustre patches. 

Next, we decided to install the pre-patched, Lustre-enabled Linux kernels and 
kernel source supplied by Cluster File Systems. On our new Xeon servers running 
SLES 9, the kernels were easily integrated. The Xeon nodes running an older Linux 
distribution were able to run a pre-patched kernel intended for a newer distribution of 
Linux. We were able to successfully run the Lustre client on the new kernel version, 
but we experienced frequent system failures when many of the clients were working 
in parallel. We attribute these failures to the fact that we used a newer kernel version 
in conjunction with an outdated Linux distribution. We believe certain libraries and 
dependencies, such as glibc, were not interacting correctly due to the version 
differences. 

Until recently, Lustre was not supported on the PowerPC architecture. Cluster File 
Systems graciously offered to port the Blue Gene/L version of Lustre to our platform. 
These new versions of Lustre were installed on our Xeon, Xeon EM64T, and PPC970 
platforms. The new version of the software allows for the interoperability of the 
PPC970 clients with the Xeon based storage servers.  

With the new expanded environment and the new version of Lustre installed on 
most of our systems, we revisited installing the Lustre client on our Xeon platform. 
Instead of using our outdated Linux distribution, we set up a portion of the cluster to 
network boot SLES9. These network boot nodes ran a Lustre client and the pre-
patched kernel with no problems. With this last installation, we were able to run 
Lustre on all nodes in our computational and storage environments. 

Configuring nodes in our environment to run the Lustre servers and clients was 
done through the lconf utility. The configuration parameters are individually passed to 
this utility and are written in XML-formatted files. Lustre supports several storage 
servers for a single file system including optional failover servers. Additional object 
servers can also be added as needed. Lustre supports up to two metadata servers: one 
primary metadata server and one failover server. Additionally, Lustre also offers 
several key configuration options not available in other solutions. Lustre can be 
configured with a custom stripe size which determines the amount of data from a 
particular file that is written to each object storage target (OST). The number of OSTs 
to stripe a single file across can also be set to a single OST, all OSTs, or any number 
in between. Limited support for a stripe pattern is available for Lustre as of version 
1.4.0; currently only a single pattern is available. 

Running the Lustre servers and clients is similar to other parallel file system 
products. The servers and clients are started individually on the desired systems. 
Lustre uses a single tool to start all clients and servers for a single filesystem. The tool 
loads the appropriate kernel modules, starts the appropriate executables, and mounts 
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the file system if the node is a client. After our initial difficulties, we have found our 
Lustre installation to be high-performance and reasonably reliable. 

4.3 TerraFS 

TerraFS is a new parallel filesystem exclusively targeted for Linux clusters. Instead of 
a completely custom system, TerraFS uses the iSCSI protocol for client-server 
communication and leverages Linux md (multi-device) software RAID for 
parallelism. TerraFS storage servers run a custom iSCSI target daemon and stores 
object data using any underlying file system. Clients use a proprietary TerraFS 
initiator to create an iSCSI connection to each server. Thus, each client has a series of 
block devices representing every remote iSCSI storage device. A parallel block 
device is constructed at the client by aggregating the remote iSCSI block devices 
using Linux md software RAID. When the parallel block device is formatted using 
the TerraFS extz file system, the proprietary iSCSI targets implement a cache 
coherent parallel file system. 

TerraFS is implemented on the server side as a userspace application but on the 
client side as a patched Linux kernel and client daemon. At the present time, 
TerraScale builds custom client kernels to their customers’ specifications. A company 
engineer patched our source tree, installed, and tested the system on a single computer 
and then sent us instructions on how to install and configure TerraFS on our cluster. 
In our case, the kernel build stage required about 3 weeks because we were using a 
highmem kernel configuration that TerraScale had not encountered before and caused 
the operating system to halt when the filesystem was started. After TerraScale 
completed the initial testing process, installing and configuring TerraFS on our 
system proceeded very quickly and without problems. 

We found TerraFS less tolerant of transients than other systems. An unexpected 
reboot of a storage server, for example, would flood client logs with error messages. 
After several weeks of testing with frequent client and server restarts, we received an 
error message indicating that the free block count was corrupted and the filesystem 
incorrectly reported that it was full. Other than this single error, it supported our entire 
test suite without difficulty. TerraFS fully supports UNIX permissions and ACLs, so 
it would be suitable for a large multi-user cluster deployment. 

TerraFS does not currently support availability or reliability. Although md 
provides software RAID, including RAID 1 mirroring and RAID 5, TerraFS only 
supports RAID 0 striping at the present time. In addition, TerraFS does not support 
the PPC970 architecture, which makes it inadequate for our heterogeneous datacenter. 
While we found TerraFS to be a fully functional high-performance parallel 
filesystem, we will wait for the product’s feature set and operating system support to 
mature before considering it for local use. 

4.4  GPFS 

IBM released GPFS 2.3, the first version that supports heterogeneous PPC970 and 
Xeon systems, in December 2004. Our experiences with GPFS were very positive, 
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and we found it to be a very powerful filesystem with well-documented 
administrative tools. After about 2 days of initial experiences, we are now able to 
install and configure GPFS on every system in our datacenter in just a few hours. 

The GPFS installation process was simple and straightforward. GPFS is 
implemented as a series of kernel modules referred to as the kernel compatibility layer 
and must be compiled by the end-user at the final stage of software installation. The 
documentation for this stage is slightly out of date, and we were surprised that the 
compilation configuration file we needed to edit did not contain sample lines for our 
officially supported platform. The comments provided sufficient explanation, 
however, and we were able to compile the kernel compatibility layer on all of our 
systems. It is important to note that GPFS is only guaranteed to work on certain 
commercial Linux variants. In our case, we used the SuSE SLES .111 kernel. We also 
tried to use the .141 kernel, and while GPFS compiled, it did not function at all. We 
now believe the documentation. 

After installing the GPFS software, a quick series of command line utilities are 
used to configure GPFS. Setup steps include creating the GPFS cluster, creating 
network storage devices (NSDs), creating a filesystem, adding clients, and finally 
mounting the volume. One documented limitation that we were initially unaware of is 
that GPFS requires block access to devices and cannot function on devices managed 
by Linux LVM. The initial configuration stages appear to work with LVM and only 
the final filesystem creation step fails. We spent several hours trying to figure this out, 
but an IBM specialist identified the problem from a quick examination of the 
configuration files over e-mail. Once the software installation was complete, creating 
the filesystem required about 5 minutes. 

GPFS has several features to support high availability and reliability. SAN and 
dual-head SCSI configurations can be used to provide high availability to storage 
devices, keeping disks accessible even if a single server fails. A quorum system 
allows continuing filesystem operation even during the failure of storage servers. 
Unfortunately, our simple hardware configuration cannot support these options. GPFS 
can also provide redundancy through software-based block replication. Overall, GPFS 
was straightforward to install on our systems and has provided excellent performance. 

5 Results 

The primary results of our work are functional in nature, and we were able to 
successfully install and configure each filesystem on our heterogeneous cluster test 
bed. All of these filesystems operated as expected and were capable of storing and 
retrieving data. We then examined the performance of each filesystem with both 
single processor and parallel benchmarks.  
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Fig. 2. Single Xeon node read bandwidth by request size 
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Fig. 3. Single Xeon node write bandwidth by request size 
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Fig. 4. Single PPC970 node read bandwidth by request size 
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Fig. 5. Single PPC970 node write bandwidth by request size 
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5.1 Single Node Performance with IOZone 

The single client bandwidth for each file system was obtained using the iozone 
filesystem benchmark [7]. The objective of these tests was to evaluate each 
filesystem’s performance with varying I/O request block sizes for very large files. 
These tests were executed on client nodes of both architectures in our computing 
environment. Additional iozone tests were performed on the storage and metadata 
servers in our environment in order to determine the baseline performance for our 
supporting storage hardware. The hardware performance analysis was done by writing 
a file larger than the amount of RAM available for a system in order to avoid any 
caching effects. The client tests wrote 32 GB files.  

The baseline performance of the individual storage system components, locally 
running the ReiserFS filesystem, is indicated on each of the figures for comparison to 
the parallel filesystem products evaluated. The IBM x345 storage server, with the 
attached IBM EXP400 RAID array, exhibited an average read bandwidth for all I/O 
request sizes of 82.5 MB/sec with a 1.44 MB/sec standard deviation and a write 
bandwidth of 72.3 MB/sec with a standard deviation of 2.0 MB/sec. The metadata 
server exhibited an average read bandwidth for all I/O request sizes of 50.8 MB/sec 
with a 0.19 MB/sec standard deviation and a write bandwidth of 55.6 MB/sec with a 
standard deviation of 2.7 MB/sec.  

The read bandwidth we observed from each file system evaluated on the Xeon 
clients reveals several interesting points (see Fig. 2). The GPFS, Lustre, and TerraFS 
filesystems follow the bandwidth trends of the storage server to varying degrees. 
GPFS attained an average read bandwidth of 92 MB/sec with a 1.86 MB/sec standard 
deviation, Lustre attained an average read bandwidth of 78.4 MB/sec with a 1.5 
MB/sec standard deviation, and TerraFS attained an average read bandwidth of 69.4 
MB/sec with a 1.97 MB/sec. NFS exhibited a consistent read performance of 30 
MB/sec, with a 0.96 MB/sec standard deviation, for reads of all sizes. PVFS2 
exhibited a volatile read performance ranging from 43.75 MB/sec to 10.85 MB/sec. 
For the tests performed, PVFS2’s read bandwidth eventually stabilized at 30.1 
MB/sec. 

While some filesystems running on Xeon clients were able to attain a write 
bandwidth faster than the baseline performance of a single storage server node, most 
were not able to break this threshold (see Fig. 3). Lustre and GPFS exceeded this 
threshold and achieved better single client performance than a single client writing 
directly to a single RAID array. GPFS produced an average write bandwidth of 
100.66 MB/sec, with a standard deviation of 1.69 MB/sec. Lustre produced an 
average write performance of 102 MB/sec with a standard deviation of 0.2 MB/sec 
for all write sizes analyzed. TerraFS achieved an average write performance of 51.0 
MB/sec with a standard deviation of 0.88 MB/sec. NFS achieved an average read 
performance of 27.0 MB/sec, with a 0.027 MB/sec standard deviation. PVFS2 
performed poorly for small I/O request sizes, with a low bandwidth of 10MB/sec, but 
gradually increased to 51.0 MB/sec for block sizes of 4 MB to 16 MB.  

In our experimental setup, one item of concern was the use of LVM with all 
filesystems except for GPFS. We prefer to use LVM on our RAID devices for ease of 
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configuration in our occasionally reconfigured computing. We were concerned that 
using LVM with Lustre, TerraFS, and PVFS2 and not with GPFS would skew the 
results, so we ran additional bandwidth tests using Lustre to analyze this independent 
variable. As expected, when the partitions on our storage servers were configured 
with LVM, we noticed a slight decrease in performance. Comparisons we made 
between Lustre OSTs configured to use the raw storage device and Lustre OSTs 
configured to use LVM partitions indicate that LVM configuration incurs an 
approximate 2 MB/sec decrease in performance. Our results show all filesystems 
using LVM except for GPFS. In cases where GPFS outperforms Lustre by a small 
bandwidth amount, this configuration irregularity may be partially responsible. 

Our next battery of tests evaluated each filesystem’s read performance on the 
PPC970 architecture (see Fig. 4). The general performance trends are similar to the 
read performance of the Xeon clients. A noticeable difference between the read 
performance measured on the Xeon and PPC970 nodes is that the PPC970 clients do 
not attain the performance level of the Xeon clients in this set of experiments. The 
GPFS clients attained the best read performance on the PPC970 system, which is 
80.77 MB/sec with a 0.47 MB/sec standard deviation. The GPFS results observed on 
the PowerPC system are 12 % slower than the Xeon clients. The Lustre clients on the 
PPC970 architecture attained an average read bandwidth of 57.4 MB/sec with a 
0.17MB/sec standard deviation, which is 26.7% slower than those on the Xeon 
architecture. The PVFS2 performance fluctuated from 15.8 MB/sec to 26 MB/sec. 
The PVFS2 clients on the Xeon nodes also outperformed the PPC970 systems by 
34.2% to 6.75%. NFS was the only file system tested where the read performance was 
consistent across platforms with an average read bandwidth of 29.9 MB/sec. 

Our final test using the iozone benchmark measured the single-client write 
bandwidth for PPC970 clients for each product evaluated (see Fig. 5). As with the 
read performance, the measured performance trends were similar to those on the Xeon 
clients. Again, the Xeon clients outperformed the PPC970 clients. The write 
performance of the GPFS client is 80.5 MB/sec, with a standard deviation of 0.77 
MB/sec. Our data indicates that GPFS clients on the PowerPC system are 20% slower 
than the Xeon clients. The Lustre clients demonstrated an average write bandwidth of 
63.7 MB/sec, with a standard deviation of 0.1 MB/sec, and were 37.9% slower than 
the write performance on the Xeon system. Similar to the PVFS2 client on the Xeon 
system, the client on the PPC970 systems started with low performance and gradually 
increased to 53 MB/sec, which is 5% slower than the stabilized write bandwidth 
measured on the Xeon nodes. NFS’s write performance on the PPC970 system is 
consistent with the Xeon nodes with an average write bandwidth of 26.6 MB/sec. 

5.2 Parallel Performance with the NCAR caggreIO and metarates Benchmarks 

For our parallel performance analysis, we employed two benchmarks used by NCAR 
for storage procurement. The first benchmark, caggreIO [1], measures aggregate file 
read and write rates with an increasing number of simultaneous clients. The 
benchmark uses direct system calls to read and write files in 128MB chunks; we read 
and write files at least 50% larger than the amount of RAM available in a node. The 
second benchmark, metarates [2], measures metadata manipulation rates. This 
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application uses system calls to create, close, and stat exactly 10,000 files per node. 
We ran these tests on both the Xeon and PCC970 clusters using each filesystem. 

The first sequence of average aggregate bandwidth tests was performed on the 
Xeon cluster. Lustre exhibits the best aggregate write performance followed by GPFS, 
PVFS2 and TerraFS, which show similar performance for larger processor counts (see 
Fig. 6). In terms of read bandwidth, GPFS, PVFS2, and Lustre alternately produced 
the best aggregate write bandwidth followed by TerraFS (see Fig. 7). All of the 
parallel systems considered here outperformed NFS. 

We also examined the impact of using Linux channel bonding on the storage 
servers for both Lustre and PVFS2. The graph lines labeled “1Gbps” show 
performance with only a single Gigabit Ethernet connection instead of two bonded 
links. For these tests on the Xeon nodes, we also used the standard 2.4.26 and Lustre 
RHEL 2.4.x kernel instead of the SLES 9 2.6.x kernel. The introduction of Linux 
channel bonding drastically improved the performance of PVFS2 for both reads and 
writes, and even increased the bandwidth to be competitive with Lustre. Channel 
bonding did not substantially improve the performance of Lustre. CFS indicated that 
this is expected and suggested that Lustre’s optimal bandwidth could be obtained by 
using dual unbonded interfaces with Lustre itself managing aggregation. As we 
wanted to perform all tests with a single network configuration, we did not fully 
investigate this option but intend to do so in the future. 

The second sequence of aggregate bandwidth tests was performed on the PPC970 
cluster. Lustre provided the best write performance (see Fig. 8). The read tests 
produced more interesting results. PVFS2 with channel bonding was directly 
competitive with Lustre from np=4 to np=7 and both exhibited a slightly decreasing 
read bandwidth with increasing clients in that range (see Fig. 9). We believe that this 
is due to the selection of blades from chassis units and the chassis switch 
performance. Otherwise, Lustre provided the best performance, and as the number of 
clients increased the performance of PVFS2 with channel bonding gradually reduced 
to the performance of PVFS2 without. 

Our final analysis examined how well each filesystem handles metadata intensive 
applications using the metarates benchmark. We ran the benchmark in two 
configurations, with the first using a single directory for all clients and the second 
using a unique directory for all clients. The benchmark measures the amount of time 
for a certain number of clients to create 10,000 files. In both configurations, Lustre 
exhibits the best overall performance, while PVFS2 exhibits the slowest file creation 
rate. 

When operating in a single directory, filesystem metadata operations are limited by 
the locking scheme protecting the structure used to store directory entries. As a server 
function, this appears to be generally independent of the client architecture (see Fig. 
10). Lustre approached a file creation rate of 1027 files/s, NFS sustained an average 
of 374 files/s, and PVFS2 sustained an average of 25 files/s. Of particular note is the 
sudden drop in metadata performance demonstrated by TerraFS and GPFS when 
operating with multiple clients. When running on a single processor, TerraFS created 
files at around 204 files/s, but when running with more than one client, the file 
creation rate dropped to around 10 files/s. Similarly, GPFS dropped from 959 files/s 
to about 167 files/s. We believe that this is because both systems use inode-based 
filesystems to store metadata and require excessive synchronization.  
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Fig. 6. Xeon cluster average aggregate write bandwidth by number of clients 
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Fig. 7. Xeon cluster average aggregate read bandwidth by number of clients 



16 Jason Cope, Michael Oberg, Henry M. Tufo, and Matthew Woitaszek  

 

0

20

40

60

80

100

120

0 5 10 15 20 25
Number of Concurrent Clients

A
ve

ra
ge

 A
gg

re
ga

te
 W

rit
e 

R
at

e 
(M

B
/s

)

NFS PVFS2 (A) PVFS2-1Gbit (B) Lustre
 

Fig. 8. PPC970 cluster average aggregate write bandwidth by number of clients  
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Fig. 9. PPC970 cluster average aggregate read bandwidth by number of clients 
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Fig. 10. Average aggregate file creation rate in a single directory by number of clients 
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Fig. 11. Average aggregate file creation rate in a unique  
directory for each client by number of clients 
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All filesystems provide much better performance when performing metadata 

operations in unique directories instead of single directories (see Fig. 11). Lustre 
peaked at 1646 files/s, NFS peaked at 953 files/s, and PVFS2 maintained a creation 
rate of about 25 files/s. While the file creation rates demonstrated by Lustre, NFS, and 
PVFS2 appear to level out with increasing clients, TerraFS and GPFS scaled very 
well in our testing range. TerraFS started at 206 files/s and increased by an average of 
186 files/s per processor. GPFS started at 945 files/s with an average increase of 855 
files/s per processor. Just as its use of an inode-based filesystem may have reduced 
performance in the single-directory test case, here we suspect that this treatment of 
inodes as data blocks may have allowed for perfectly parallel operation with no 
synchronization. 

6 Future Work 

Having completed this initial examination of parallel filesystem products for use in 
our heterogeneous datacenter, our immediate plan is to select one or two of these 
filesystems and deploy them for production use. At the present time, Lustre and GPFS 
are the most attractive candidates, but we only have two storage servers and 
previously encountered problems attempting to run GPFS on the Lustre kernel. As the 
Lustre patches are being integrated into the SLES kernel and IBM supports GPFS on 
all official SLES kernel releases, we anticipate that this will be possible in the near 
future. We would also like to examine reliability through redundancy without 
specialized hardware, leveraging internal filesystem redundancy features such as 
block replication and parity. 

After implementing a shared parallel filesystem for use in our datacenter at the 
University of Colorado, we would like to investigate the possibility of connecting to 
CU filesystems from the BlueGene/L system at NCAR’s Mesa Lab facility. This will 
involve extensive security policy and mechanism conversations between the two 
institutions. Nevertheless, as many NCAR BlueGene/L users frequently develop 
software on our CU systems, remote accessibility may be particularly beneficial. We 
intend to support Grid-based connectivity in the meantime. 

As our goal is to provide a single centralized parallel filesystem for multiple 
clusters, we are currently interested in filesystems that function well in a least 
common denominator situation using gigabit Ethernet as the I/O interconnect. Later, 
we would also like to examine a subset of these filesystems using multiple high-
performance interconnects (e.g., 10-GigE, Myrinet, and Infiniband) between the 
computational clusters and the storage clusters. Two issues make this more expensive 
and difficult. First, specialized interconnects are much more expensive per-port than 
gigabit Ethernet. Some organizations will require heterogeneous interconnect support 
because providing a specialized network connection to all hosts may not be 
financially feasible. Second, in order to multi-task a specialized interconnect for both 
MPI and storage traffic, the system must be adequately planned before installation. 
For example, many installations purchase specialized interconnect switches with 
exactly the capacity of their compute cluster, making adding I/O nodes or trunking to 
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a storage cluster extremely cost prohibitive. While a single network solution would be 
ideal, the cost and requirements of different types of communication may make 
heterogeneous solutions more attractive in the near future. 

7 Suggestions for Filesystem Developers 

Linux systems produce no fury greater than when a block-based filesystem suddenly 
becomes inaccessible and the pending I/O operations cannot be fulfilled. In our 
testing, filesystem server daemons were frequently stopped and started as we 
concluded testing one system and commenced testing another. Even in production 
environments, servers occasionally crash unexpectedly, and gracefully surviving these 
unanticipated transients can only be provided by software developers who enjoy 
writing robust error handling routines. In all of filesystems we tested, we encountered 
a substantial amount of unpleasant filesystem behavior in the face of transients, and 
we hope that future filesystem releases are designed to handle error situations with 
finesse. We have compiled a wish list for future filesystem products that would 
provide for a more pleasant system administrator experience. 

First, filesystems should never be unresponsive to standard system administration 
commands even in failure conditions. We encountered situations where executing 
“ls –la /mnt” or “df” would hang because a server hosting a parallel filesystem had 
been rebooted. Similarly, benchmark processes running at the time of the server crash 
would exist in the defunct state as zombies immortal even to “kill –s 9” commands 
until the clients were rebooted.  

Second, filesystems should support clean normal and emergency termination, and 
never interrupt system shutdown procedures. Many of the filesystems we tested seem 
to support only “start” directives and provide various excuses why directories cannot 
be unmounted, client processes cannot be terminated, and the server daemons cannot 
be stopped. One filesystem we tested included kernel patches that made rebooting 
systems using “reboot” fail. With this filesystem running, the operating system could 
not be shut down normally, and we had to use remote power control to restart these 
systems!  

Finally, like industrial control systems, filesystems should support an Emergency 
Stop feature. When invoked, Emergency Stop would simply drop pending I/O 
operations and kill the services. Instead of waiting for a failure condition to be 
resolved, just reject all pending I/O requests and fail gracefully. This way, 
administrators working on recovering from a parallel filesystem crash would not need 
to reboot client nodes to return a filesystem to production. Similarly, it would be very 
pleasant if a parallel filesystem could automatically detect critical failures and make 
the filesystem inaccessible on all client nodes in such cases. Current behavior is much 
more nebulous, occasionally leaving users and administrators wondering if the 
filesystem is available. 
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8 Conclusions 

All of the parallel filesystems we tested outperformed our current NFS-based 
installation. However, this improvement came at a price. Perhaps the most frustrating 
aspect of the four parallel filesystems we tested is their dependence on specific kernel 
versions. Both Lustre and GPFS, commercially supported parallel filesystems 
intended for high performance computing, essentially require current commercially 
supported Red Hat or SuSE kernels. They do not support the default kernel.org Linux 
kernels. This is problematic because, though our newer equipment uses supported 
kernels, we prefer to continue to use noncommercial kernels on our previously 
purchased production cluster systems due to cost considerations. Although the 
TerraFS policy of custom-building kernels based on our specifications was a pleasant 
relief for the system administration staff, not being allowed to build our kernels in-
house is unacceptable from a security, maintenance, and research standpoint. Specific 
kernel version requirements stall critical kernel exploit patches and make building 
kernels for specialized hardware difficult (and we are still working to return our 
Dolphin interconnect to production). In the case of Lustre, we are confident that CFS 
efforts to integrate their patches into the SuSE and kernel.org kernels will eventually 
eliminate this problem. However, until such patches are propagated to the Linux 
community by all vendors, the kernel dependencies introduced by these filesystems 
complicate administration and are quite inconvenient. 

We examined the functionality of several currently available parallel filesystems 
on clusters in our heterogeneous Intel and PPC970 datacenter. Lustre, PVFS2, and 
GPFS functioned well on all of our systems and provided roughly equivalent 
performance on our suite of benchmark tests. PVFS2 and GPFS provide the best 
right-out-of-the-box administrator experience and did not require kernel changes. 
Lustre and TerraFS require more setup overhead and troubleshooting. In the near 
future we intend to select a parallel filesystem for use in our environment and subject 
it to a test much more difficult than any benchmark: real users. 
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